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Abstract

W'e develop a new class of overlapping Schwarz type algorithms for solving scalar convection-

diffusion equations discretized by finite element or finite difference methods. The precon-

ditioners consist of two components, namely, the usual two-level additive Schwarz precon-

ditioner and the sum of some quadratic terms constructed by using products of ordered

neighboring subdomain preconditioners. The ordering of the subdomain preconditioners is

determined by considering the direction of the flow. We prove that the algorithms are opti-

mal in the sense that the convergence rates are independent of the mesh size, as well as the

number of subdomains. We show by numerical examples that the new algorithms are less

sensitive to the direction of the flow than either the classical multiplicative Schwarz algo-

rithms, and converge faster than the additive Schwarz algorithms. Thus, the new algorithms

are more suitable for fluid flow applications than the classical additive or multiplicative

Schwarz algorithms.
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1. Introduction. In this paper, wepresent somenew overlapping domain decompo-
sition methodsfor the numericalsolution of large, sparse,nonsymmetricand/or indefinite
linear systemsof equationsarising from Galerkin finite elementdiscretizationsof elliptic par-
tial differential equations.The new algorithmsbelongto the family of overlappingSchwarz
methodswhich is a variant of the classicalSchwarzalternating algorithm, introduced in 1870
by H. A. Schwarz[22] in an existenceproof of elliptic boundary value problemsdefined in
certain irregular regions. This family of methods hasattracted much attention in the past
few yearsas convenientand powerful in the solution of partial differential equations, see,
especiallyon parallel machines.For tutorial presentations,see,e.g. [7,23].

We shall focuson linear nonsymmetricand/or indefinite second-orderelliptic finite ele-
ment or finite differenceequations.The solution of suchproblemsis an important compu-
tational kernel in implicit methods, suchas solving systemsinvolving the Jacobian in any
Newton-likemethod usedin computational fluid dynamics,[3,4, 24]. This family of methods
is built upon the so-calledsubdomainmapping operatorsT,., which solve the original prob-

lem, defined on a domain 9t, approximately in subdomains f_i C 9t with artificial boundary

conditions and zero extensions to fi - f_'i. The formal definitions of Ti and fi'_ will be given in

the next section. By using these T/'s as basic building blocks, a family of polynomial Schwarz

algorithms can be defined. Let N be the number of subdomains and To the coarse space

mapping operator. We define

T = poly(To,T1,..., TN)

as a multi-dimensional matrix-valued polynomial with variables Ti, and assume that the

polynomial satisfies poly(O,...,O) = 0, which simply means that the constant term in the

polynomial is zero. It is known that if u* is the exact solution of the finite element equations

then Tu* can be computed without knowing u* itself. This is because Tiu', i = 0,..., N,

can be computed directly from the right-hand side function of the finite element equations.

With g = Tu* as the new right-hand side vector, a new linear system can be introduced as

Tu=g

and it is not difficult to show that if T is nonsingular then the new linear system gives

the desired finite element solution u*. For each choice of the polynomial poly, a particular

Schwarz algorithm is defined. The algorithm is called optimal if the condition number, or

some other "equivalent measure" for nonsymmetric or indefinite problems, of the operator

T is independent of the mesh parameter h and the number of subdomains N. Several such

optimal algorithms, such as the additive (T = _N 0 T_) and multiplicative (T -- I _ ii_=0(IN _

Ti)) Schwarz algorithms, have been identified. Generally, the additive algorithms have two

features among others:

• They converge more slowly than the multiplicative algorithms because of the lack

of subdomain-to-subdomain communications within each iteration;

• Their convergence is independent of the ordering and coloring of the subdomains.

The features of the multiplicative algorithms include:

• They are faster in terms of the total iteration number;



• They are not as parallel as the additive algorithms because of the data dependence

between overlapping subdomains

• They have a strong dependence on the global ordering and coloring of subdomains

especially for convection-diffusion problems.

See the last section of this paper for a detailed discussion on the ordering and coloring

issues. To use the multiplicative algorithms efficiently, it is important to color and order

the subdomains correctly. However, to obtain the optimal coloring and ordering is difficult

in practice especially when the underlying mesh is unstructured and the subdomains are

obtained by means of graph partitioning, see, e.g., [3, 10]. For a particular problem and a

given subdomain partitioning, it is not impossible to obtain a reasonable subdomain coloring

and ordering according to certain practical heuristics, but, in general, especially for unsteady

problems where the flow direction changes from time step to time step, it becomes desirable

to have algorithms that do not need, or depend less on, manual subdomain ordering and

coloring. Extensive discussions on the effects of ordering and coloring of nodes or elements,

in the context of iterative and direct sparse matrix computations, can be found in many

research papers, see, e.g., [1, 9, 15, 17]. Some of the ideas and techniques can also be

applied, with certain modifications, to the coloring and ordering of overlapping subdomains.

We will not consider these techniques in this paper, since our interest is in automating the

construction of the preconditioner.

In this paper, we shall identify some overlapping Schwarz algorithms, which we call the

local multiplicative Schwarz methods. The new algorithms are not only optimal but also

have convergence rates that are:

• better than that of the additive Schwarz method;

• not sensitive to the coloring and global ordering of the subdomains, nor the flow

direction;

• more parallel than the multiplicative Schwarz algorithm.

Our basic idea is to use the multiplicative Schwarz algorithm only locally between those

pairs of overlapping subdomains for which we have effective techniques to determine the

flow direction without any global operations. We use additive techniques to handle the

global communication between pairs of subdomains and the coarse level preconditioning.

The paper is organized as follows. In Section 2, we define our model elliptic problem, its

discretization and the overlapping partitioning of the finite element mesh. In Section 3, we

introduce and analyze the new local multiplicative Schwarz algorithms for symmetric and

general nonsymmetric problems. In the last section of the paper we provide some numerical

examples regarding the performance of the new algorithms, as well as some comparisons

with the classical additive and multiplicative Schwarz algorithms.

2. Model problems and subdomain partitioning. Let f/ be an open, bounded

polygonal region in R d,d = 2 or 3, with boundary oqf_. We consider the homogeneous

Dirichlet boundary value problem

Lu(x) = f(x) in ft,(1) u(x) = 0 on oof_.



Here the elliptic operator L has the form Lu(x) = -V. (Vu) + 2/3(x) • Vu + c(x)u. All the

coefficients are, by assumption, sufficiently smooth and the right-hand side f E L2(f_). We

assume that the equation has a unique solution in HI(ft ). Let (.,-) denote the usual L_(Q)

inner product and II II or II" IlL2 the corresponding norm. The weak form of equation (1) is:

Find u E //01 (ft) such that

(2) b(u, v) = (f , v), W, E H_(f_).

The bilinear form b(u, v) is defined by

Here 8(x) = c(x) - V-2. In addition to the following bilinear form

a(u,.)=f vuV.dz,
which is used as the usual energy inner product in HI(O) with norm defined by, Ilulla=

(a(u, u)) 1/2, we also use two other bilinear forms

.(,,,.)_-Jo(j +iJ
and c(u, v) = (_u, v), which correspond to the skew-symmetric and zeroth order parts of L,

respectively. It is easy to verify that

.)= .), w, E H0'(ft).

Following Dryja and Widlund [13], we define a two-level conforming finite element trian-

gulation of ft. The region ft is first divided into nonoverlapping subdomains fti, i = 1,-. -, N,

such that _ x= Ui=I fli. Then all the subdomains fti, which are assumed to have diameter

of order H, are divided into triangular elements of size h. We assume that the union of all

of the elements of size h, forms a regular finite element triangulation of ft. The common

assumption, in finite element theory (of. [8]), that all elements are shape regular is adopted.

With such a triangulation, we let 1/;_ C H_(f_) be the usual piecewise linear continuous finite

element space on Ft. To obtain an overlapping decomposition of the domain, we extend

each subdomain fti to a larger region ftl, i.e. fti C f_'i C ft. We assume that the over-
1 '

lap is uniformly large and let 1//, - Vh nHI(fti) c l,;, be the usual finite element subspace

defined over ft'i, with zero extension to ft - ft' i. Here uniformly large overlap means that

distance(0ftl N ft, 0fti _ 12) > cH, where c > 0 is a constant independent of H. It is clear

that _ = L'i _'i and Vh = Vo + V1 +... + Vlv.

The finite element discretization of (2) reads as follows: Find u" E Vh such that

(a) b(u', v) - (f, v), Vv E V_.

Another key ingredient in the design of optimal domain decomposition preconditioners

is the use of at least one global coarse space, which in a way connects the local subdomains
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just introduced. A number of coarse spaces have been introduced in the literature, see, e.g.,

[11, 12]. We shall focus only on a simple one. Let fin = {T_} be a quasi-uniform triangulation

of Q and Ti one of the triangles with a diameter on the order of H. _H is the coarse grid.

Let Vo be the piecewise linear continuous finite element space on l_H. In the analysis part

of this paper we assume, for simplicity, that Vo C Vh, and that the diameter of the coarse

elements 7-i is of the same order as the diameter of the subdomains _i. The theory can easily

be extended to the case of a non-nested coarse [2], and to cases with small overlap [14].

In the numerical experiments section, we shall present some cases where the sizes of the

subdomains and the coarse elements are of different order.

For each i = 0, 1,..., N, we define a mapping operator Ti : Vh ---+Vi by

(4) b(T_u,v) = b(u,v), Vu E l/h, Vv 6 _.

These Ti will serve as the basic building blocks of the algorithms to be discussed in the

next sections. We shall mention that these Ti's can also be defined inexactly if we replace

the left-hand side bilinear form in (4) by a different bilinear form, which, in some sense is

equivalent to b(.,.). Details on inexact Schwarz algorithms can be found in, for example,

[5, 7, 23].

3. New algorithms and analysis. In this section, we define the local multiplicative

Schwarz algorithms by using the basic Schwarz building blocks /7/defined in the previous

section. For each pair of neighboring subdomains, with indices i and j, we define a multi-

plicative Schwarz operator

P,j = I- (I- Tj)(I - T,).

t t

Note that for any u E Ivy, Piju C V,. + Vj, and generally Pij _ Pji, unless fli and _j have no

common points. Let

(5) P -- To + Z Pij,

where the summation is taken over all possible Pis's. Let gi5 = Piju* and go = Tou'; as

mentioned earlier, both can be computed without the knowledge of u'. With g =_-go + _ gis,

it can be seen that if the operator P is nonsingular, then the linear system

(6) Pu=g

has the same solution as that of (3). We shall prove in the remainder of the paper that P

is indeed nonsingular and uniformly well-conditioned, and that therefore (6) can be solved

by using certain Krylov space type iterative acceleration methods, such as CG or GMRES

[21]. We remark that if the bilinear form b(., .) is symmetric, then the operator P is also

symmetric with respect to b(-, .). In other words, the local multiplicative Schwarz operator P

is symmetric if both Pij and Pj_ are included in its definition. Later, in this section, we shall

intentionally destroy the symmetry by dropping one of the two terms when solving nonsym-

metric problems. Keeping only the terms in the upwind direction makes the algorithm very

useful for convection-diffusion equations. Like other upwinding type discretization schemes,

we shall also introduce a parameter/_ that controls the amount of the upwinding, or artificial

diffusion, in the Schwarz preconditioning polynomial.
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3.1. Analysis for the symmetric positive definite case. Since the symmetric posi-

tive definite case is rather simple, we consider it here. Throughout this subsection we assume

that b(.,.) = a(-, .). The full abstract theory of Dryja and Widlund, [13], on the optimal

convergence Of the additive Schwarz methods cannot be used directly because our subprob-

lem operators PO are not defined as projections. We summarize the results of the symmetric

case in the following theorem.

THEOREM 1. There exist positive constants c and C, independent of the the mesh

parameters h and H, such that

for any u C Vh

One of the key facts that we shall use in the proof of the theorem is given in the following

lemma due to Dryja and Widlund [13].
LEMMA 3.1 (DRYJA AND WIDLUND[13]). There exist positive constants c and C,

independent of the mesh parameters, such that

N

_ll_,ll_o< _ tl:r,ull_o< Cllult_o,
i=0

for any u E Vh.

We remark again that since both Pij and Pji are included in the definition of P, the

operator P is symmetric with respect to b(.,-). The upper bound of the operator P can be

obtained easily, since

and

IIP_ll] <_C(llr;_ll==+ IITjull=,,)

lIPull2o__c E IIP_J_II].

By using Lemma 3.1, we obtain that IIP"ll, <_Cll_ll,, for any u E I.'_ and where C > 0 is a

constant independent of the mesh parameters. To obtain the lower bound, we note that

(7) a(Piju, u) = IIT;ull2o+ IITjull]- a(Tiu, Tju).

Using the fact that a(T_u,Tju) <_ IIT_ullollTjullo<_1/2(llT_ulll+ IIT,_IIN),we have

1 T, ul[2) "a(Piju, u) >_ -_ (IIT_,.,II]+ II

This gives the lower bound when combined with Lemma 3.1.

We remark that since the operator P is symmetric and positive definite with respect to

the inner product a(-, .), the conjugate gradient method can be used. It is obvious that the

degree of parallelism of the new method is higher than that of the symmetrized multiplicative

Schwarz algorithms. Here we have considered only Poisson's equation; the extension of

the algorithm and theory to general variable coefficient symmetric positive definite cases is

straightforward.

The analysis for the symmetric case is included above for theoretical interest. In practice,

however, we do not believe that this type of upwinding preconditioning would offer much

improvement over the classical additive Schwarz method for symmetric positive definite

problems. Some numerical examples are included in the last section of the paper.

5



3.2. Analysis for the general nonsymmetric case. We consider the general non-

symmetric case in this subsection. The techniques are mainly borrowed from Cai and Wid-

lund [5, 6]. Let us begin by summarizing the main results, namely that the operator P

is uniformly bounded and its symmetric part, with respect to the inner product a(-,-), is

uniformly positive definite, in the following theorem. This theorem provides the optimal

convergence of several Krylov space iterative methods, including GCR [16] and GMRES [21]

among others.

THEOREM 2. There exist positive constants Ho, c(Ho) and C, independent of the mesh

parameters h and H, such that if H <_ Ho, the operator P is uniformly bounded, i.e.,

IlPull__<Cll_lla, w, _ v,,,

and its symmetric part is uniformly positive definite, i.e.,

a(Pu, u) >__cll_ll_,,v,.,_ v,,.

To prove the above theorem, we need a result from Cai and Widlund [6] regarding the

optimality of the additive Schwarz preconditioner.

LEMMA 3.2 (CAI AND WIDLUND[6]). There exist positive constants Ho, c(H0) and C,

independent of the mesh parameters, such that if H <_ Ho

N

II_ T,_II_,_<Cllull_, V,.,c v_,
i=0

and

N

IIT,ull_,,_>cllull_,,,Vu_ V,,.
i=0

We next present a number of useful lemmas before giving the proof of the main theorem

later in this subsection. The following lemma says that the symmetric part of Ti is positive

definite if the size of the subdomains, i.e. H, is sufficiently small. The proof is relatively

simple, and therefore not included. The constant C appearing in the lemma depends on the

coefficients/3(x) and c(x) of the elliptic operator L.

LEMMA 3.3. There exists a positive constant C, independent of the mesh parameters,

such that

a(_,,T_,_)>_(1- CH)IITi,.,II]- CHII_II_,(n,),_,

for any i, and u E Vh.

The contribution from the first and zeroth order terms of the elliptic operator L is

estimated in the next lemma. We prove that the contribution is of lower order in H.

LEMMA 3.4. There exists a positive constant C, independent of the mesh parameters h
!

and H, such that for any i,j 7_ 0 for which f_'i and Qj overlap



1. s(T_,Tj_) < CH (lIri_,ll_÷ ttTj_II_)

2. _(_,.T_,_)<_OH (ll:F_ll_+ 117bll_)

for all u E Vh. The same estimates hold if the bilinear form s(., .) is replaced by the bilinear

form c(., .).
We leave the proof of this lemma to the interested reader. The basic idea of the proof is to

use that IITzUllL_(a;) <_ CHtITlull_(al), for any l # 0. As in the previous lemma, the constants

C depend on the coefficients i3(x) and c(x) of the elliptic operator L. Using Lemmas 3.3

and 3.4, we now proceed to give a lower bound of the two-subdomain multiplicative Schwarz

operator Pij.

LEMMA 3.5. There exists a positive constant C, independent of the mesh parameters h
!

and H, such that for any i, j for which f_i and f_j overlap

for any u E Vh.

Proof. V_refirst note, by using the definition of the operators Ti and Tj and the fact that

b(.,-) = a(-,.) + s(.,.) + c(.,-), that

a(P_ju, u) = a(T_u,u) + a(Tju, u) -a(TiTju, u)

= a(Tiu, u)+a(Tju, u)-a(Tiu, Tju)+

_(_, r_T_u)+ c(_,T;Tju).

The desired proof follows by using Lemmas 3.3 and 3.4. 17

We are now ready to prove the main theorem of this subsection. The upper bound is

easy. It can be seen that

P{j= Z + (I-T,.)Tj.

By using the fact that (I - Ti) is uniformly bounded, we obtain

IIP,-J_ll,_<C(IIT_II_+ IITJ_II_).

The upper bound of P can then be obtained by summing the above estimate for all possible

pairs of subdomains and using Lemma 3.2. To establish the lower bound, we sum the

estimate in Lemma 3.5 and use the lower bound part of Lemma 3.2, and the assumption

that H is sufficiently small.
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FIG. 1. The term TiTj is kept in the Schwarz polynomial only if the flow goes from flj to fli.

3.3. A weighted local multiplicative algorithm. In this subsection, we introduce a

variant of the local multiplicative algorithm that is particularly useful for fluid flow problems.

The basic philosophy is the same as in the design of any upwinding type discretization

schemes. We first note that the operator P has the following, more explicit, form

(8) P= E T,- E T,T_.
0<i<N l<i#j<N

In other words, P is equal to the regular two-level additive Schwarz operator plus some sec-

ond order perturbation terms. Since the additional second order terms enhance the nearest

neighbor communication, we therefore believe they will make the overall convergence faster

for the classical additive Schwarz algorithms. This observation will be confirmed by a num-

ber of numerical experiments in the next section. Borrowing a term from the Streamline

Upwind Petrov-Galerkin (SUPG) methods [18, 20], the second order terms T_T_, if used prop-

erly, "stabilize" the preconditioner when solving convection-diffusion equations. The SUPG

method also suggests the following version of the algorithm with weights in the upwinding

directions. Let

(9) T= E Ti- E I_,jT, Tj.
O<_i<_N l<_i#j<_N

Here/2ij equals zero or/_, where 0 < # < 1.0 is a constant. The choice of #ij depends on
S I

the direction of the flow. The intuition is that if the flow goes from flj to fli and if these

two subdomains are neighbors, then we set #ij to be a positive constant #, and/_ji to zero.

We have not exploited the possibility of using different #_j for different pairs of subdomains.
I s

Of course, if _i and Qj are not neighbors we then set #ij = #ji = 0. The motivation here

is exactly the same as in using the upwinding techniques in the solution of problems that

involve hyperbolic components. A difference is that the usual upwinding techniques are

used only at the discretization level, and our "upwinding" is introduced as a way to define

the preconditioning polynomial. It is understandable that, for problems that have a strong

characteristic direction, such as convection-diffusion problems, some kind of upwinding can

speed up the convergence.

We now propose a heuristic method to be used to determine the flow direction. Let

/3(x) = (bl(x),..., bd(x)) T be the characteristic vector of the flow. For each pair of neigh-

boring subdomains, we choose a curve, such as ['ij in Fig. 1 or another curve in _i N_j,
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that moreor lessseparatesthe subdomains.Sinceweare defining preconditioners,it is not
necessaryto find the preciseseparatingcurve. Let nij, defined on Fij, be the unit vector

I

pointing from subdomain f_j to fl' i. We define the parameters i_ij by looking at the sign of

a line integral

/_ij = { # if Jfl(x).
0 otherwise,

nijds > 0

where the integral is taken along the curve Fij.

4. Numerical experiments. In this section, we present some experimental results to

numerically understand the local multiplicative Schwarz algorithms, and to compare them

with the classical additive and multiplicative Schwarz algorithms for both symmetric pos-

itive definite and nonsymmetric problems. Although the proposed methods belong to the

class of optimal preconditioners, some effort is needed to obtain the best performance for

a particular test problem, especially in the selection of the parameter/_ in both symmetric

and nonsymmetric cases. We note that # = 1.0 is usually not a good choice. As mentioned

earlier, our optimal convergence theory requires that the coarse grid is sufficiently fine, how-

ever, in practice, especially in the nonsymmetric cases, it is quite difficult to find a coarse

grid of proper size such that the convergence is not slower than the purely local (i.e., without

a coarse space) Schwarz algorithms.

We consider the following model problem on the unit square

Lu = f in fl = (0,1)×(0,1),u = 0 on 0f_.

The right-hand side f is always chosen such that the exact solution is u = ze'_Ysin(rcz)sin(rcy).

The coefficients of L will be specified later for each test problem. We use an 256 x 256 uni-

form fine mesh throughout this section. The number of subdomains is 64 in all test cases,

i.e., we use an 8 x 8 uniform partitioning of the domain into subdomains, with a uniform 2h

overlap between each neighboring subdomains, where h = 1/256. In our experiments, the

coarse grid linear system and all the subdomain linear systems are solved exactly by using a

sparse linear system solver from the Argonne National Laboratory software package PETSc

of Gropp and Smith [19]. All the Schwarz methods are used as left preconditioners for the

CG method, or the non-restarted GMRES method, with a zero initial guess. We stop the

CG or GMRES iteration as soon as the preconditioned initial residual is reduced by a factor

of 10 -5. We discretize the PDE at both the fine and the coarse levels by the usual five-point

central, or upwinding, finite difference method.

Example 0. We first test the algorithms on a simple Poisson's equation. (This is not

what the new algorithm is designed for.) In Fig. 2, we show that the new algorithm is slower

than the multiplicative Schwarz algorithm, but with parameter _ = 0.3, faster than the

additive Schwarz algorithm. Without using a proper #, the algorithm can be slow. An 8 x 8

coarse solve is included in all cases. The multiplicative Schwarz algorithm is symmetrized in
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Fro. 2. The curves show the iteration history of the additive, multiplicative and the local muitiplicative

Schwarz preconditioned CG methods. The solid curve represents the local multiplicative Schwarz method,

the dashed curve represents the additive Schwarz and the broken curve represents the multiplicative Schwarz
method.

order to be able to use CG. We remark again that even though the symmetrized multiplicative

Schwarz is the fastest among the three algorithms, it has the lowest parallelism. The per-step

arithmetic cost of the new algorithm is higher due the repetition of the subdomain solves.

Example 1. We let Lu = -V. (Vu) + V. (flu), where fl = (bl, b2) is a constant vector

with bl, b2 = 100.0, or -100.0. We discretize the PDE with the usual five-point central finite

difference method. We first compare the new method, with p = 0.5, with the additive and

multiplicative Schwarz methods without coarse space in the case/3 = (100, 100). For the

multiplicative Schwarz, we order the subdomains by the natural ordering. No coloring is

incorporated in the implementation. The results are presented in the left figure of Fig. 3. It

can be seen clearly that, for fl = (100, 100), the multiplicative Schwarz method is the fastest

of the three. However, the situation changes, if we let fl = (-100, -100) and do not change

the subdomain ordering in the multiplicative Schwarz method. As shown in the left figure

of Fig. 4, the new method becomes the fastest of the three. Apparently, the changing of the

flow characteristics hurts the convergence of the multiplicative Schwarz algorithm, but the

new method does not suffer.

We next present cases when coarse spaces are included in the preconditioners. The

optimal convergence theory for all three Schwarz algorithms requires that the coarse grid

is sufficiently fine. Our numerical experiments suggest that they in fact need coarse grid

of different sizes, i.e., a sufficiently fine coarse grid for one Schwarz method may not be

sufficiently fine for the others. We say a coarse space is "good" if the total number of

iterations is smaller than without it. A coarse grid, not sufficiently fine, usually leads to a

slower convergence in all Schwarz type methods. In the right figure of Fig. 3, we present

three Schwarz algorithms with three different coarse grid sizes, namely the multiplicative

Schwarz with an 16 × 16 coarse grid; the additive Schwarz with an 32 × 32 coarse grid; the

new method with an 64 × 64 coarse grid, and p = 0.5. Comparing the right figures in Fig. 3

and Fig. 4, we observe that the multiplicative Schwarz method with a coarse space of proper

10
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FIG. 3. Central finite difference discretization with/3 = (100,100). The lefl figure shows cases without

coarse spaces, and the right figure shows cases with coarse spaces. The curves show the iteration history

of the additive (dashed), multiplicative (broken) and the local multiplicative (solid) Schwarz preconditioned

GMRES methods.
lO°

-_ 10-=

10 -_

10 -5 ,,

10 4
5 10 15 20 25

GMRES iterations

10 0

-_ 10 -=

10 _

_10 _

1°4o _ lO l'S _o _s
GMRES #e_abons

Fro. 4. Central finite difference discretization with _3= (-100, -100). The left figure shows cases without
coarse spaces, and the right figure shows cases with coarse spaces. The curves show the iteration history of the
additive (dashed), multiplicative (broken) and the local multiplicative (solid) Schwarz preconditioned GMRES

methods.

size is always the best of the three.

Example 2. We let Lu = -V. (Vu) + 27. (flu), where /3 = (bl, b2) is a constant

vector with b_, b_ = I000.0 or -1000.0. The equation is discretized by the usual five-point

upwinding finite difference method. We run the test code without using coarse spaces for four

different constant flow directions. As before, for the multiplicative Schwarz preconditioner,

we order the subdomains in the natural ordering. No coloring is assumed. For the new

algorithm we use/_ = 0.7. The residual history is presented in Fig. 5. It is clear that if

the subdomain ordering does not follow the flow characteristic direction the convergence of

multiplicative Schwarz becomes significantly worse than in a case when the ordering follows

the flow. Additive Schwarz is not sensitive at all to such an ordering, but is quite slow. The

new algorithm does not need any special attention to the ordering, and converges faster than

(a) the additive Schwarz algorithm in all four cases; (b) the worst case of the multiplicative
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Schwarz algorithm.

Our experience suggests that it is by no means easy to find a coarse space of proper

size in the case that the PDE is discretized by upwinding finite difference methods. Further

theoretical and numerical investigation of this situation is underway.

5. Conclusion. In this paper, we introduce a new class of overlapping domain decom-

position methods for solving scalar convection-diffusion problems. The method improves

the classical multiplicative Schwarz methods by reducing their sensitivity with respect to

the flow direction. For the Galerkin finite element discretization, we prove that the method

is optimal in the sense that the convergence rate is independent of the mesh size and also

the number of subdomains in both R 2 and R 3. Numerical experiments are also reported to

illustrate the rankings of the methods and some open questions are identified.

Acknowledgement. The authors are indebted to D. Keyes and O. Widlund for reading

a draft of the paper and also many helpful discussions.
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